\[\left(1 \leq C \land C \leq 1000\right) \land \left(1 \leq v0 \land v0 \leq 1000\right)\]
\[\begin{array}{l}
\\
\frac{1 - \sqrt{1 - 4 \cdot \left(C \cdot v0\right)}}{2 \cdot C}
\end{array}
\]
(FPCore (C v0)
:precision binary64
(/ (- 1.0 (sqrt (- 1.0 (* 4.0 (* C v0))))) (* 2.0 C)))
double code(double C, double v0) {
return (1.0 - sqrt((1.0 - (4.0 * (C * v0))))) / (2.0 * C);
}
real(8) function code(c, v0)
real(8), intent (in) :: c
real(8), intent (in) :: v0
code = (1.0d0 - sqrt((1.0d0 - (4.0d0 * (c * v0))))) / (2.0d0 * c)
end function
public static double code(double C, double v0) {
return (1.0 - Math.sqrt((1.0 - (4.0 * (C * v0))))) / (2.0 * C);
}
def code(C, v0):
return (1.0 - math.sqrt((1.0 - (4.0 * (C * v0))))) / (2.0 * C)
function code(C, v0)
return Float64(Float64(1.0 - sqrt(Float64(1.0 - Float64(4.0 * Float64(C * v0))))) / Float64(2.0 * C))
end
function tmp = code(C, v0)
tmp = (1.0 - sqrt((1.0 - (4.0 * (C * v0))))) / (2.0 * C);
end
code[C_, v0_] := N[(N[(1.0 - N[Sqrt[N[(1.0 - N[(4.0 * N[(C * v0), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision] / N[(2.0 * C), $MachinePrecision]), $MachinePrecision]
\begin{array}{l}
\\
\frac{1 - \sqrt{1 - 4 \cdot \left(C \cdot v0\right)}}{2 \cdot C}
\end{array}